
A Pattern Language for Adaptive Distributed Systems
Francisco José da Silva e Silva1, Fabio Kon2, Joseph Yoder3, Ralph Johnson3

1Department of Informatics - Federal University of Maranhão
 2Department of Computer Science - University of São Paulo

3Department of Computer Science - University of Illinois at Urbana-Champaign

fssilva@deinf.ufma.br, kon@ime.usp.br,
joe@joeyoder.com, johnson@cs.uiuc.edu

Introduction
Modern computing environments are characterized by a high level of dynamism. Two
major kinds of dynamic changes occur frequently. The first refers to structural changes
such as hardware and software upgrades, protocol and API updates, and operating
system evolution. The second refers to dynamic changes in the availability of memory,
CPU, network bandwidth and, in mobile systems, connectivity and location. Drastic
changes may occur in a few seconds, impacting the performance of user applications
profoundly. Among existing production software systems few offer support for
managing, adapting, and reacting to these changes; most of the times, all the work is left
to users and system administrators who must take care of them manually.

Fortunately, this scenario is gradually changing as researchers in academia and
industry investigate elegant and robust ways to build self-adaptive systems for the
dynamic, distributed environments of the future. In this paper we present a pattern
language that captures some of the most relevant problems and solutions faced by
developers who accept the challenge of building automatically configurable and
adaptive distributed systems.

Dynamic Reconfiguration
Services must grow to meet increasing usage, new requirements, and new applications.
However, flexibility usually conflicts with availability. In conventional systems, the
service provider must often shut down, reconfigure, and restart the service to update or
reconfigure it. In many cases, it is unacceptable to disrupt the services for any period of
time. Disruption may result in business loss, as in the case of electronic commerce, or it
may put lives in danger, as in the case of mission critical systems delivering disaster
information, for example. Research in dynamic reconfiguration seeks solutions to this
problem.

By breaking a complex system into smaller components and by allowing the
dynamic replacement and reconfiguration of individual components with minimal
disruption of system execution, it is possible to combine high degrees of flexibility and
availability.

Self-Adaptation
Highly heterogeneous platforms and varying resource availability motivates the need for
self-adapting software. Applications can improve their performance by using different

algorithms in different situations and switching from one algorithm to another according
to environmental conditions. Significant variations in resource availability should
trigger architectural reconfigurations, component replacements, and changes in the
components' internal parameters.

Consider, for example, the network connectivity of a mobile computer as its user
commutes from work to home. As the user switches from a wired connection at the
office, to a wireless WAN using a cellular phone, and finally, to a modem connection at
home, the available bandwidth changes by several orders of magnitude. The movement
is also accompanied by changes in latency, error rates, connectivity, protocols, and cost.

Ideally, we would like to have a system capable of maintaining an explicit
representation of the dependencies among the network drivers, transport protocols,
communication services, and the application components that use them. Only then,
would it be possible to inform the interested parties when significant changes occur.
Upon receiving the change notifications, applications and services would be able to
select different mechanisms, replace components, and modify their internal
configuration to adapt to the changes, optimizing performance.

Designing Self-Adaptive Systems
The design of a self-adaptive system must answer three key questions:

1. When to adapt? How can the system detect that it is time to adapt (change its
behavior) so that its performance will improve or that changes in the
environment will not harm system correct functioning.

2. What do adapt? Which parts, elements, components of the system (e.g.,
mechanisms, algorithms and protocols) are subject to being adapted or replaced?

3. How to adapt? What are the mechanisms that allow for change in behavior?
Given a certain system and environmental state, which adaptations would be
more beneficial?

Only by addressing the three key questions above, a software framework can
provide a comprehensive solution to the problem of building effective self-adaptive
systems. In the remaining of this paper we present a pattern language that addresses the
most important aspects of dynamic reconfiguration and adaptation in distributed
systems.

Note, however, that there are other important non-functional aspects that are
orthogonal to the patterns in this language. Aspects such as Security, Fault-Tolerance,
and Real-Time can be essential factors for consideration depending upon the different
environments the system will be deployed. In these cases, the reader should refer to
patterns specific to these domains.

Figure 1: Pattern Language Structure

Figure 1 illustrates the pattern language structure, which is composed of three
parts: monitoring, event detection, and dynamic configuration. Part I helps answer the
"When" question. These patterns are related to monitoring distributed environments.
The Distributed Monitor (1) and the Adaptive Monitor (2) patterns describe
monitoring solutions for applications that must obtain a global view of the state of
distributed resources to decide when adaptations should be performed. The
Distributed Monitor (1) provides a simpler solution while the Adaptive Monitor
(2) describes an extension that supports dynamic reconfiguration of the monitor. Both
monitors provide monitoring data to event detection mechanisms. Part II presents the
Event Detector (3), which helps detect when an adaptation should be performed and
decides "What" adaptations should be performed. When the need for an adaptation is
detected (with the information provided by the monitors), the Event Detector (3)
notifies the mechanisms responsible for the dynamic reconfiguration of the system.

Part III shows "How" adaptation can be performed with the Automatic
Reconfigurator (4) and the Adaptive Reconfigurator (5) patterns. Again, the
former pattern describes a simpler solution while the latter describes an extension that
supports dynamic reconfiguration of the reconfiguration process, leading to a
"reconfigurable reconfigurator".

These patterns work together to solve the problem of describing what resources
we are concerned about, when to adapt and how to adapt. We now present the five
patterns of the pattern language. The patterns are presented in the same order in which
information in the system flows, i.e., the monitors collect information, passing it to the
detector, which, in its turn, notifies the reconfigurators.

1. Distributed Monitor

Motivation:
In order to improve its performance by means of dynamic configuration, a system must
be aware of the dynamic state of the environment in which it is executing. In a
distributed system, the environment is spread throughout a collection of, possibly
heterogeneous, machines linked by, possibly heterogeneous, network links. Monitoring
resource availability can help detect when the system reaches a state in which dynamic
reconfiguration would improve application performance or avoid its breakage

Problem:
How to monitor the resources of a distributed system efficiently?

Forces:
• The state of a distributed system is composed of many variables distributed

across many machines in various locations. The communication delays and
relative speeds of computations of asynchronous distributed systems make it
difficult to detect a global state in which dynamic adaptation would be desirable.

• Trying to detect opportunities for dynamic adaptation by looking at isolated
machines is easier but this approach cannot provide optimal solutions; it is very
likely that relevant global information will be missing.

• Having a single centralized node be aware of the state of the entire system might
be infeasible since this compromises scalability (the central node becomes a
bottleneck as the system grows) and fault-tolerance (the central node becomes a
single point of failure). One can approximate a centralized view of the global
state by sending messages from all the nodes to the central node at a high rate.
But this may impose an extremely high communication cost and make the
central node a single point of failure.

• On the other hand, replicating the central node to avoid a single point of failure
increases system complexity and network usage.

• Adopting a lazy protocol in which the state of individual nodes is sent to the
central server at a slow rate could solve the network congestion problem but
would probably make the data in the central node stale and therefore of little use.

Solution:
Organize the distributed system as a hierarchy of clusters, as illustrated in Figure 2, so
that each cluster includes the machines in a local area network, typically containing
from a few to approximately one hundred machines (this number can vary depending
upon requirements and the environment). Provide a single (possibly replicated)
Monitoring Server for each cluster. Have the cluster nodes send periodic information
about their local state to the Monitoring Server, as illustrated in Figure 3. These
messages may be sent by multicast to all replicated copies of the Monitoring Server
(e.g., using the IP-Multicast protocol) so that the network load is not increased by an
increase in the number of replicas.

Figure 2 – Hierarchy of computer clusters

Figure 3 – Distributed Monitoring within a single cluster of machines

To avoid unnecessary messages in the network, the frequency with which the
messages are sent to the Monitoring Server cannot be high. Thus, have each node
monitor its resources locally at a higher rate (e.g., once per minute) and only send
update messages to the Monitoring Server when a significant change in the local state
occurs. If no changes occur during a long period (e.g., 5 minutes) then send an update
message to the Monitoring Server as a keep-alive. If it is not important whether the
nodes are alive or not, then this keep-alive message is not necessary.

The Monitoring Servers of different clusters may be organized in a hierarchy so
that consolidated information about cluster state can be exchanged across clusters in a
lazy fashion. The farther a Monitoring Server is from a certain machine, the less
accurate this monitoring information will be for this machine since changes might have
happened to the machine by the time the Server processes the information.

Example:
A distributed system is composed of several distributed resources, such as CPUs,
memory, disks, and network links. For each resource, one would like to know the
current usage level. Resource usage can be expressed by several properties. For a
network link, for instance, properties could be available bandwidth, current latency,
number of collisions, etc. In such a system, it would be desirable to have a load
balancing mechanism that would migrate tasks from one machine to another depending
on resource availability on the distributed system.

 Consequences:
+ Network usage is limited (can be fine tuned through the periodicities).

+ One can have a good approximation of the system global state.

_ Implementation in the hierarchical case can be complex, compared to a single
centralized server.

_ To implement the monitoring service component that collects the state of local
resources in each node one must define, in advance, which machine resources
will be monitored.

Resulting Context:

By applying this pattern, a collection of machines, possibly organized in a hierarchy of
machine clusters, can be monitored with low network and processor overheads. Thus, it
is possible to get an approximate view of the global state of the resources in the
distributed system. This pattern requires that the kinds of resources to be monitored be
defined a priori; if there is a need for adding new types of resources to be monitored at
runtime, then one should use the Adaptive Monitor (2) instead. This pattern describes
how to collect information about “When” to adapt, which will be used by the Event
Detector (3) for triggering the adaptations.

Related Patterns:
• The Publisher-subscriber pattern [Buschmann:1996] describes a mechanism for

objects in a distributed system to declare interest in receiving information about
a certain topic and for publishing information to be sent to the interested objects.

Known Uses:
• Grid computing systems instantiate this pattern to monitor the geographically

distributed machines of the Grid. The Globus toolkit [Foster:1997], for example,
uses the LDAP protocol for communicating information about resource
availability and status of Grid nodes; a federation of LDAP servers plays the
roles of the monitoring servers of this pattern. The InteGrade Grid middleware
[Goldchleger:2003] also instantiates the pattern but uses CORBA for
communication and a new service, called Global Resource Manager, as the
monitoring server.

• The 2K operating system [Kon:2000, Kon:2005] instantiates this pattern to
maintain an approximate view of the state of machines in the distributed system
and uses this view as a hint for remote execution of user applications.

• The Framework for Adaptive Distributed Systems [Silva:2003] developed by
Silva in his PhD work provides a generic object-oriented framework for
instantiating this pattern based on CORBA distributed objects. Communication
is performed with the CORBA event service, which is an instantiation of the
Publisher-Subscriber pattern [Buschmann:1996].

Variant:

For some adaptive distributed applications there is no need for a centralized view of the
state of distributed resources (e.g., a video client retrieving a movie from a video
server). Instead, the application is only concerned with the state of resources located in
the path between its components. In such a case, there is no need for a Monitoring
Server. Each software component responsible for monitoring a resource should
implement an interface through which the state of the resource can be queried. It should
also implement a notification service through which applications can register interest in
being notified about changes on the state of the monitored resource.

Implementation:
To implement this pattern, a system developer must implement and deploy Local
Resource Monitors for each of the resources to be monitored. When implementing
monitors for resources such as CPU and memory, almost always it is necessary to deal
with the specificities of each operating system as there are no widespred standards for
getting this kind of information. In Linux systems, for example, it is common to use the
/proc pseudo-filesystem to get information about resource usage such as CPU and
memory. In Windows systems, it is common to rely on Win32 API functions such as
GlobalMemoryStatus to obtain memory information and RegQueryValueEx to
get CPU consumption information from the Windows registry.

Local Resource Monitors must send data updates to the Monitoring Server
periodically. This one-way communication can be implemented in various ways: from
rudimentary sockets (using UDP, TCP or IP-Multicast channels) to higher level
middleware mechanisms such as Java RMI, CORBA IIOP, or SOAP.

2. Adaptive Monitor

Motivation:
In very dynamic systems, we may not know a priori which objects and resources should
be monitored. As new applications are installed in a system, we may need to monitor
information that was previously irrelevant or not available.

Problem:
How to monitor system objects and resources that are not known at the design phase of
the monitoring system?

Forces:
• Limiting the types of objects and resources that are monitored makes it easier to

develop adaptive strategies because there is less information to be managed and
analyzed. However, it is hard to predict ahead of time which objects and
resources are available or needed as a system or demands on the system evolves.

• Systems, services, and resources change often as the requirements evolve. The
monitoring system must cope with such changes by starting to monitor new
things and stopping the monitoring of things that are no longer relevant.

• A distributed system is composed of several distributed resources, such as
workstations, network links, and application servers. The usage of a resource can
be expressed by different properties that adaptive applications might be
interested in monitoring. For a network link, for instance, properties could be
available bandwidth, current latency, and number of collisions. Therefore, a
flexible way to describe distributed resources and their monitoring properties is
needed.

Solution:
Define an Object Monitor responsible for gathering the state information of a single
resource property and allow dynamic loading and unloading of these monitors in the
various nodes of the distributed system. Each resource property could be defined with
three attributes: resource name, property name and value type (e.g., <“Network Link”,
“Available Bandwidth”, “Mbps”> <“CPU”, “CPU load”, “percentage”>).

Define a standard Object Monitor interface regardless of the property to be
monitored and define a standard protocol and message format to be supported by the
Monitoring Server. Each Object Monitor registers itself with the Monitoring Server as
part of its instantiation process. Object Monitors send a message to the Monitoring
Server whenever there is a significant change on the state of the resource properties they
monitor, as illustrated in Figure 4.

Figure 4 – Monitoring different kinds of resources

Example:
Consider the example described in the Distributed Monitor (1) pattern, where the
CPU and memory of distributed machines are monitored to provide load balancing.
When a machine becomes congested, with high CPU or memory usage, the load is
balanced by migrating tasks to a machine with lower load. If new applications
composed of several collaborative tasks must now be executed, a new resource property
(available bandwidth) should also be monitored to avoid allocating collaborative tasks
to different machines connected by low bandwidth links. Therefore, a new Object
Monitor must be implemented (and dynamically loaded into the system) to monitor the
available bandwidth.

As another example, consider a Web application for a bookstore. The load
balancing among application servers can be based on CPU load. If, during the
application execution, the administrator realizes that the network (and not the CPU) has
become the bottleneck, an Object Monitor can be dynamically loaded into the
application servers to redistribute the load based on the number of network connections
rather than using just the CPU load as the scheduling parameter.

Consequences:
+ New or different resource properties can be monitored without affecting the code

of the monitoring infrastructure

+ The monitoring service can start monitoring new or different resource properties
without interrupting the service

_ New resource properties should apply to the standard Object Monitor interface,
which can limit the expressiveness of the resource property to be monitored

Implementation:
To implement such monitoring functionality, define a Resource Monitoring Object
(RMO) that monitors a specific resource property. Each RMO monitors a single
resource property that can correspond to physical resources such as memory, CPU, disk,
and network links, but it can also monitor software parameters, such as the number of
open threads in a server object.

Every resource property has a set of associated operation ranges, which are
defined by the application developer. For example, one could use the following
operation ranges for monitoring percentage of processor utilization: [0%, 10%), [10%,
25%), [25%, 50%), [50%, 75%), and [75%, 100%].

In all hosts containing resources that must be monitored, instantiate a Resource
Monitoring Object for each resource property to be monitored. The RMO periodically
verifies the current operation range of the resource property and only notifies registered
components about changes on the operation range, limiting the number of monitoring
messages in the distributed system. Figure 5 shows the RMO interface using CORBA
IDL.

Figure 5 - Resource Monitoring Object interface

The parameter()method returns a reference to the resource property being
monitored while me() returns a reference to the monitored entity.
current_range() returns the current operation range of the monitored property,
allowing the developer to use, optionally, a pull approach in complement to the push
mechanism described above. As an example, consider the operation ranges described
above for monitoring percentage of processor utilization. The method
current_range() would return 2 if a monitored processor usage is in the range
[10%, 25%). The RMO interface also allows temporary suspension of the monitoring
process (s u s p e n d ()) as well as its resumption (r e s u m e ()) .
change_frequency() alters the frequency used for verifying the operation range
and shutdown() stops the monitoring process.

Figure 6 presents the class diagram for a Resource Monitoring Object
responsible for monitoring the CPU usage on a host. The design is extensible, allowing
the developer to construct easily new RMOs for monitoring other resource properties.
To do so, the developer has to rewrite two classes, fully reusing the other five ones.

The RMOImpl class implements the Resource Monitoring Object interface
illustrated in Figure 5. CpuMonitor and RmoCpuImpl are specific for the CPU
usage property. The CpuMonitor class contains the code that actually verifies the

CPU usage with a given frequency encapsulated by the Frequency object. The user
can change the frequency value through the change_frequency()method of the
RMOImpl object. This method calls a set()method of the Frequency object. The
user can also suspend or resume the monitoring by calling the suspend() and
resume() methods of the R M O I m p l object. These methods call the
SuspendMonitor object that implements a monitor used by the CpuMonitor
thread to verify if it must continue the CPU monitoring at the end of every monitoring
interaction. A CurrentRange object encapsulates the value of the latest CPU usage
calculated. The user can check the current CPU operation range by calling the
RMOImpl current_range() method. The Notifier thread is responsible for
sending a message to the Monitoring Server whenever there is a change on the CPU
usage operation range.

Figure 6 - Resource Monitoring Object monitoring CPU usage on a host

Resulting Context:
By applying this pattern, a collection of machines can be monitored with low overheads,
enabling the construction of an approximate view of the global state of distributed
resources. With the Adaptive Monitor (2), the set of resources and the type of
resources that are monitored can be reconfigured at runtime, enabling the monitoring of
resources that were not anticipated at design time. This solution provides a large degree
of flexibility. The data provided by the monitor will be processed by the Event
Detector (3), which will trigger the adaptation actions.

Related Patterns:
• The Component Configurator pattern [Schmidt:2000] describes a mechanism for

dynamically loading and configuring components into a running execution
environment. This pattern can be used to load new monitoring objects
dynamically.

• The TypeSquare pattern commonly used in Adaptive Object-Models (AOM) can
be used for implementing the resource properties that can monitored
[Yoder:2001; Yoder:2002]. The resource properties can be stored in a XML file
that can be read at run-time in order to dynamically build the objects responsible
for monitoring new defined resource properties without the necessity of
recompiling and restarting the LocalResourceManager. AOM describes how to
read the metadata file and dynamically build these objects using the Interpreter
and Builder patterns [Gamma:1994].

• The Properties Pattern can be used for implementing different types of resource
properties that are monitored [Foote:1998; Yoder:2001; Yoder:2002].

Known Uses:
• The Framework for Adaptive Distributed Systems [Silva:2003] allows

specifying which resources will be monitored and how they will be monitored
dynamically. This is achieved by dynamically loading new monitoring objects
into the system runtime.

• The QuO Quality Objects Framework [Zinky:1997, Vanegas:1998, BBN:2002]
provides a powerful CORBA-based framework for building quality of service
aware, distributed applications. It instantiates this pattern using "system
condition objects" as adaptable monitors.

• A mechanism for providing network environmental information in mobile
wireless networks [Sudame:1997].

• An environment to support dynamic adaptation of distributed applications using
the LuaORB system [Moura:2002].

3. Event Detector

Motivation:
By analyzing the data provided by a distributed monitoring system, it is possible to
identify relevant changes on resource availability that would impact application
performance. By sending notifications to interested parties, it is possible to allow
adaptive applications to reconfigure themselves to improve their performance in face of
environmental changes.

Problem:
How to detect and notify applications about changes in the environment?

Forces:
• Tightly coupling the code responsible for detecting environmental changes with

the application code adds unnecessary complexity, making the application code
harder to implement, debug, and maintain. It also does not allow sharing the
code with other environment-aware applications executing on the distributed
system.

• On the other hand, each adaptive application can have specific needs concerning
which environmental changes are relevant for dynamically adapting it.

• The notification of some environmental changes should be treated differently
from others, leading to the need to apply different notification policies in
different cases.

Solution:
An adaptive application must be notified of relevant changes in resource availability.
These notifications can be implemented as asynchronous events. Expand the Monitoring
Server interface (from the Distributed Monitor (1)) to allow the definition of event
evaluators through conditional Boolean expressions. The Boolean expression indicates
changes on resource property state. For instance, a "heavy use" event can be triggered
when the percentage of the CPU usage on a host becomes greater than 80%.

Some applications need to correlate multiple events, such as the percentage of
CPU usage and the amount of main memory available on a host. If this is the case, the
definition of event evaluators must support composite events by allowing the Boolean
expression to be composed of several resource properties.

Define an Event Channel to bind the event producer (Extended Monitoring
Server) and event consumers (adaptive applications). The Event Channel implements
the event delivery policy. You can organize your system with more than one Event
Channel, each one responsible for notifying related events. For instance, a network
channel may be associated with all network related events while a hardware channel
may be associated with all events related to changes on hardware components. Figure 7
shows an abstract diagram of this architecture.

Figure 7 – Event Detector structure

Figure 8 illustrates the interactions between the pattern components. The
adaptive application registers itself with the Event Channel, passing the list of
environmental changes (events) in which it is interested. The resource monitoring
objects (RMOs) continuously monitor the distributed system resources. Each RMO
monitors a specific system parameter, notifying the Monitoring Server whenever a
significant change is detected. The Monitoring Server evaluates all Boolean expressions
containing the notified parameter and notifies the Event Channel whenever a Boolean
expression is evaluated to true, meaning that an event has been detected. The Event
Channel then notifies all adaptive applications that registered interest in the event that
was triggered.

Example:
Consider a distributed system whose goal is to provide load balancing by migrating
tasks from one machine to the other by looking at machines with congested CPUs and
high memory usage. In each machine, instantiate two Object Monitors for monitoring
the percentage of CPU load and the amount of memory available. Through the
Monitoring Server interface, define a new Boolean expression that triggers an event
every time a machine becomes congested, such as: CPU_load > 80% and
memory_available < 20MB. Define an event channel used to notify the
occurrence of events. The event channel abstraction is provided by some distributed
object middleware services, such as the CORBA event service [CORBA:2002]. The
channel uses a push approach, where the Monitoring Server registers itself as an event
producer and the components of adaptive applications responsible for the dynamic
reconfigurations register themselves as consumers.

Figure 8 - Event detection and notification

Consequences:
+ Applications can share event evaluator definitions but also define new ones.

+ Allows flexible, event-specific delivery policies.

– Separating the code responsible for detecting environmental changes from
application code adds complexity and can also lead to communication delays if
they are deployed on separate machines.

Implementation:
Define a Monitoring Server responsible for collecting notifications of changes on the
operation range of resource monitoring properties being monitored by Resource
Monitoring Objects (from the Adaptive Monitor (2)). The Monitoring Server must
allow the definition of events that are triggered based on a Boolean expression. Figure
9 shows a CORBA IDL interface for defining such resource events.

Figure 9 - IDL interface for an Event

duration_time specifies the amount of time that the Boolean expression
must hold true to trigger an event notification. This avoids the notification of false
events, based on temporary situations such as a short peak on CPU usage that occurs
when a heavy application is started.

Since in a distributed system it is not guaranteed that messages are delivered in
the same order that they were generated, each message from a RMO must include a
timestamp. The Monitoring Server must maintain the last timestamp received from each
RMO, discarding older messages without processing them.

Figure 10 shows the Monitoring Server interface. The register() method
allows registering an event type and starts its detection. The interface allows the
suspension and restart of the detection process though the suspend() and
resume() methods, respectively. The unregister() method stops the detection of
a given event type. An RMO notifies changes on the operation range of the resource
being monitored through the change_parameter() method. To do so, it has to be
previously registered through the rmo_register() method. If the execution of an
RMO is suspended, resumed, or stopped the Monitoring Server must be informed
through the rmo_suspend() , rmo_resume() and rmo_unregister()
methods, respectively. The reason to do so, is that if an RMO is suspended or stopped,
the Monitoring Server should not evaluate the event types whose Boolean expression
contains the resource property that is no longer being monitored.

Figure 10 - MonitoringServer interface

The MonitoringServer interface uses the following terminology: a monitored
distributed resource is called a monitored entity. An object representing every
monitored entity and all its monitored parameters must be previously created through an
Entity Repository. The Entity Repository will create a globally unique identifier for
monitored entities and parameters. In the MonitoringServer interface, eid stands
for event identification, meid stands for monitored entity identification and pid for
parameter identification.

Figure 11 shows the class diagram of the Monitoring Server implementation.
The MonitoringServerImpl class acts as a mediator. It receives information
about resource utilization from remote RMOs and maintains a local list of entities being
monitored (instances of the MonitoredEntity class, which contains a description of
the entity and its current value). MonitoringServerImpl also keeps a list of all
active events whose descriptions are instances of EventDescription. An instance
of the Calculator class performs the evaluation of the Boolean expressions defined
in the event descriptions. Each time a Boolean expression is evaluated to true, a
corresponding SatisfiedEvent is constructed. Once every second the
EventNotifier checks for events whose expression holds true for the duration
specified in the event definition. It then uses an Event Service (e.g., the CORBA one) to
send notifications on event channels to which adaptive applications can listen to receive
the notification of event occurrences.

Figure 11 - Structure of the Monitoring Server implementation including event detection

Resulting Context:
By applying this pattern, it is possible to detect the occurrence of events based on the
state of resources in a distributed system and to notify interested parties. In particular,
the Automatic Reconfigurator (4) and the Adaptive Reconfigurator (5) patterns
rely on this event notification for carrying out the dynamic reconfiguration to adapt the
applications.

Related Patterns:
• The instantiation of the Publisher-Subscriber pattern [Buschmann:1996] depends on

a mechanism for matching subscriptions descriptions and event descriptions. This
mechanism can be implemented by using the Event Detector (3) described here.

• The Observer design pattern [Gamma:1994] describes an even simpler notification
mechanism that can be used in some cases.

• The TypeSquare pattern described in Adaptive Object-Models (AOM) can be used
for implementing the set of events that can change at runtime [Yoder:2001;
Yoder:2002]. Event definitions can be stored in a XML file that can be read at run-
time in order to dynamically build the objects responsible for detecting new defined
events without the necessity of recompiling and restarting the MonitoringServer.
AOM describes how to read the metadata file and dynamically build these objects
using the Interpreter and Build patterns.

• The Interpreter design pattern [Gamma:1994] define a representation for a given
language grammar along with an interpreter that uses the representation to interpret
sentences in the language. It can be used for implementing the Boolean expression
evaluator.

Known Uses:
• The Framework for Adaptive Distributed Systems [Silva:2003] includes an engine

for event detection that instantiates this pattern faithfully.

• The QuO Quality Objects Framework [Zinky:1997] uses "delegates" and "contracts"
to instantiate this pattern. Delegates act as proxies [Gamma:1994,
Buschmann:1996] that intercept remote method calls; during interception, a delegate
evaluates a contract to detect possible contract violations, which can be seen as a
form of event detection.

• Moreto and Endler [Moreto:2001] describe a general purpose Event Processing
Service (EPS), which can be used to detect primitive and composite events.
Composite events are defined through an event expression based on primitive event
types combined by a set of operators, similarly to the Event Detector (3).

• Welling and Badrinath [Welling:1997] describes an architecture for exporting
environment awareness to mobile computing applications. In their architecture, a
change in the environment is modeled as an asynchronous event that includes
information related to the change. The architecture also allows alternate event
delivery policies by isolating the event delivery functionality within a channel, as
done in the Event Detector (3).

4. Automatic Reconfigurator

Motivation:
A distributed system has many resources whose availability and load vary intensely. To
cope with these variations, an adaptive application must be able to reconfigure itself as
relevant changes on resource availability occur. Changes on resource availability could
be notified through an event distribution mechanism. For each event, the set of adaptive
actions that must be performed may vary.

Problem:
Given event notifications indicating changes on resource availability, how can a system
apply dynamic reconfiguration actions automatically without the need for any human
interference?

Forces:
• Coupling the application functional code with the code responsible for dynamic

adaptation increases code complexity, making it harder to implement, debug,
and maintain.

• The application developer should concentrate on the application core
functionality, considering the adaptation issues as a separate aspect.

• Limiting which adaptation mechanisms can be applied (e.g., adjusting
application parameters, switching between algorithms and relocation or
replication of application components) restricts the solution applicability.

Solution:
Using a reflective model [Maes:1987], organize the application in two levels: a meta-
level composed of objects responsible for receiving notifications of events describing
environmental changes and for applying the reconfiguration actions and a base-level,
that deals with regular application functionality.

For each event type indicating environmental changes that requires adaptation,
describe the reconfiguration action(s) that your application must apply and code it into
objects (called Handlers) that will be part of the meta-level. Each Handler object must
implement a run() method, responsible for applying the reconfiguration actions when
called. As illustrated in Figure 12, the Event Handler registers itself with the Event
Channel (described in the Event Detector (3)). Through the Event Channel, it
receives notifications of environmental changes and reacts to them by applying the
reconfiguration actions coded in its run() method.

Adaptive actions can be based on several mechanisms, such as:

a) Adjusting parameters of base-level objects (e.g., changing the presentation rate
of video frames as network bandwidth varies);

b) Switching between algorithms used by base-level objects (e.g., changing a
compression algorithm as CPU usage and network bandwidth varies);

c) Relocating or replicating application components to other network nodes.

In the application meta-level, instantiate an active object that registers itself as a
consumer of the network event channel responsible for notifying environmental
changes. Upon the receipt of an event, it calls the run() method of the corresponding
Handler object.

Figure 12 – Automatic Reconfigurator structure

Example:
Consider again the load balancing problem based on machine load. In the application
meta-level, instantiate an object that registers itself as a consumer of the event channel
responsible for notifying environmental changes. The adaptive application must react to
a notification of an overloaded machine by migrating a subset of the tasks executing at
the congested location to a machine with better CPU and memory availability (if one is
available). The migration should be triggered by the run() method of the Handler
object. This reconfiguration can be done with the assistance of libraries that support the
reconfiguration of distributed applications [KonPhD:2000].

Consequences:
+ Leads to a clear separation of concerns between the application functional code

and the adaptation code. As a consequence, the resulting application becomes
easier to design, implement, and maintain.

_ The actions applied in reaction to an environmental change are hard-coded into
the application and cannot be dynamically changed.

_ Reflection adds complexity to the system which can make understanding and
maintaining the system harder.

Implementation:
To implement this pattern, first it is necessary to make the event handlers capable of
receiving event notifications by using a mechanism compatible with the notification
mechanism chosen in the implementation of the Event Detector (3).

Then, it is required to implement handlers capable of changing the internal
behaviour or structure of the application. Thus, normally the handler programmer must
have a very good knowledge of the application implementation. One way to mitigate
this requirement is to provide an interface in the application that programmers can use
to set some parameters that determine how the application works. In this case, the
application programmer would specify how the application could be configured (by
specifiying which parameters can be set) and the event handler programmer would
simply write the code that sets the proper values for the parameters.

Resulting Context:
By applying this pattern, the system is able to respond to changes in the environment by
reconfiguring the applications, allowing for the implementation of self-adaptive
applications. The set of reconfiguration actions to be taken are hard-coded and cannot
be modified without recompiling the application. If the ability to dynamically redefiny
the reconfiguration actions is desirable, then the Adaptive Reconfigurator (5)
pattern should be used instead.

Related Patterns:
• The Reflection architectural pattern [Buschmann:1996] describes how to

separate components of an adaptable system in a meta-level and a base-level.
Base-level components deal with functional aspects of the system while meta-
level components deal with non-functional aspects such as dynamic
reconfiguration.

• Foote and Yoder [Foote:1995] describe some common reflective patterns that
should be considered when building systems that need to be able to dynamically
adapt at runtime.

Known Uses:
• The Video Datagram Protocol used by the Vosaic system [Chen:1996] uses a

hard-coded adaptation algorithm that changes parameters of a video streaming
session based on the monitored rate of dropped network packets.

• Chang and Karamcheti [Chang:2000] describe a framework for automatic
configuration and run-time adaptation of distributed applications that hard-code
alternative execution paths (algorithms) that are dynamically selected by guard
expressions of control parameters.

• Noble and Satyanarayanan [Noble:1999] describes Odyssey, a platform for
mobile data access. The adaptive application is divided in client and server
components and the hard-coded adaptation mechanism allows to choose
between different versions of the data being retrieved, so as to be compatible
with the environment resource availability.

5. Adaptive Reconfigurator

Motivation:
An adaptive application must change its behavior in reaction to changes in its execution
environment. The application can consider several different events that signal
environmental changes; for each event, the adaptive actions that must be performed can
vary. More flexibility can be achieved if the developer is allowed to specify collections
of adaptive actions (adaptation policies) for each event, switching from one to another at
run time depending on the application context. The adaptation mechanism can also
evolve or be debugged without restarting the application if it allows dynamic loading
and unloading of adaptation policies.

Problem:
How to vary at run time the collection of adaptive actions?

Forces:
• On the one hand, statically configuring the adaptation policies into the

application code requires stopping, recompiling, and restarting the application
whenever new code for an adaptation policy or changes in an old one are
developed. These activities are infeasible for applications with high availability
requirements. Dynamic loading and unloading of adaptation policies not only
resolves this problem but also minimizes resource consumption, since only
policies that are in use need to be loaded into the application code. This is
particularly important if the computer on which the application is running has
memory and processing limitations.

• On the other hand, the dynamic loading and unloading of adaptation policies
implies application overhead.

Solution:
Decouple the Event Handler interface from its implementation by defining a uniform
interface for each Event Handler that applies adaptive actions for a given environmental
event. Develop one or more concrete Event Handlers that implement this interface. Each
concrete Event Handler implements an adaptation policy. As illustrated in Figure 13,
define for each application component a corresponding C o m p o n e n t
Configurator [KonPhD:2000]. The Component Configurator keeps track of
the dynamic dependencies between the component and other system or application
components and is also responsible for (1) disseminating events across inter-dependent
components, whenever they affect several correlated components and (2) carrying out
component-specific reconfiguration actions by calling component methods directly.
Through this mechanism, the Event Handler can propagate the adaptive actions required
to adapt the application to the new environmental state.

Figure 13 – Adaptive Reconfigurator structure

Example:
It is possible to design an application to be adaptable in ways that can be fully specified
at design time, but it is difficult, if not impossible, to anticipate all the ways in which it
may be required to adapt some applications. For instance, in mobile computing
environments, the characteristics of the network connections can range from an
inexpensive, very high bandwidth with low latency connection such as high-speed
LAN, to a very expensive, low bandwidth with high latency connection such as GSM or
infrared. Even the network address of the machine can change. Mobile applications
should also be able to handle periods of disconnection. The application and data
characteristics, and the user’s context requirements and limitations may all change
dynamically. Any of these contextual conditions can change without warning and to
values unknown and unforseen by the application designer. Thus, it might be necessary
to load new adaptation policies at runtime.

Consequences:
+ Several adaptation policies can be defined and reconfigured at run time for each

environmental event.

+ The adaptation policies can be loaded and unloaded dynamically, allowing the
adaptation mechanism to evolve or be debugged without restarting the
application. This also minimizes resource consumption.

_ The dynamic loading and unloading of adaptation policies generates overhead to
the adaptation mechanism.

_ The level of complexity increases making applications more difficult to develop
and maintain.

Implementation:
Organize application components in two layers: (1) a metalevel layer, responsible for
receiving event notifications describing changes on distributed resource usage and also

applying reconfiguration actions to adapt the application to the new environmental state;
and (2) a base level, that provides the application functionality.

Define, for each application component, a corresponding Component
Configurator object. As described in the Dynamic Dependence Manager pattern
[Domingues, 2005], the Component Configurator keeps track of the dynamic
dependencies between the component and other system or application components and
helps to maintain runtime consistency in the presence of reconfigurations.
Component Configurators are also responsible for disseminating events across
inter-dependent components. Examples of common events are the failure or migration
of a component, internal reconfiguration, or replacement of the component
implementation. The rationale is that those events affect all the dependent components.
This communication mechanism coordinates reconfiguration actions among the
application components. The Component Configurator contains the code to deal
with these configuration-related events. This approach provides a clear separation of
concerns between the application functional code and the code that deals with the
application reconfiguration.

As illustrated in Figure 14, create an EventReceiver that registers itself with
the event channels (described in the Event Detector (3)). The EventReceiver will
be notified of events that indicate relevant environmental changes. Depending on the
type of the event, it executes the appropriate actions required to adapt the application to
the new environment state, using the Component Configurators to coordinate
reconfiguration actions among the, possibly distributed, application components.
Organize the classes that handle each environment event as a set of Event Handler
strategies, using the Strategy design pattern. Figure 14 illustrates three strategies
(EventAHandler1, EventAHandler2, and EventAHandler3) that can
be triggered when an instance of EventA is notified.

Figure 14 - Architecture for handling events and reconfiguring the application

Concrete Event Handlers should be packaged into a suitable unit of
configuration that can be dynamically linked to the application, such as a dynamically
loaded library (DLL) or a Java class file. The dynamic loading and unloading of Event
Handlers can be controlled by specific configuration mechanisms such as the
Component Configurator (forming a metametalevel, not illustrated in Figure 15). Other
configuration operations, such as suspend and resume, can also be supplied. Suspending
the execution of an Event Handler implies not executing the reconfiguration actions
when the corresponding event is triggered. Resuming it, turns back the adaptive
behavior of the application for the corresponding event.

Resulting Context:
By applying this pattern, the system is able to respond to changes in the environment by
reconfiguring the applications, enabling the implementation of self-adaptive
applications. In addition, the set of adaptation actions is also reconfigurable, allowing
the application maintainer or operator to modify or add new reconfiguration strategies at
runtime. This permits the construction of highly flexible and reconfigurable applications
that can evolve and change radically at runtime without the need for shutdown and
restart.

Related Patterns:
• The Strategy design pattern [Gamma:1994] explains how to build a system such

that the algorithms it uses can be changed dynamically. The Adaptive
Reconfigurator (5) can be implemented by enhancing an implementation of
the Automatic Reconfigurator (4) with the Strategy pattern.

• The Component Configurator pattern [Schmidt:2000] (not to be confused with
the Component Configurator object [KonPhD:2000] used in the implementation
section of the pattern described here) describes a mechanism for dynamically
loading and configuring components into a running execution environment. This
pattern can be used to load new Event Handlers dynamically allowing new
forms of reconfiguring a system.

• The TypeSquare pattern described in Adaptive Object-Models (AOM) can be
used for implementing the set of events that an extended
ComponentConfigurator can handle [Yoder:2001; Yoder:2002]. Event
definitions can be stored in a XML file that can be read at run-time in order to
dynamically build the objects responsible for handling new defined events
without the necessity of recompiling and restarting the extended
ComponentConfigurator. AOM describes how to read the metadata file and
dynamically build these objects using the Interpreter and Build patterns.

Known Uses:
• The Framework for Adaptive Distributed Systems [Silva:2003] allows dynamic

loading new Component Configurators and new Event Handlers at runtime.

• The dynamicTAO reflective ORB [Kon&Roman:2000] allows dynamic loading
new ORB components at runtime, including components that take care of the
reconfiguration process itself.

Variant:
If the adaptation mechanism must provide more than one adaptation policy for a given
event but dynamic loading and unloading its code is unnecessary, the Strategy pattern
can be applied instead of the Component Configurator. Decouple the Event Handler
interface from its implementation and develop concrete Event Handlers that implement
the uniform interface. Each concrete Event Handler implements an adaptation policy
and corresponds to a Concrete Strategy using the Strategy pattern terminology. A
Context object must be configured with the concrete Handler to be used when the
corresponding event is triggered. If the adaptation mechanism must switch from one
adaptation policy to another at run time, all concrete Event Handlers must be
instantiated as part of the application initialization. If only one policy will be used in a
single application execution, it is only necessary to instantiate the Event Handler that
corresponds to the policy that will be applied.

Pattern Language Summary
Computing environments today require systems to adapt quickly to changes, which
often includes reconfiguring or adapting to an evolving environment. This paper
presented a pattern language for assisting with this requirement, specifically with the
problem of building automatically configurable and adaptive distributed systems. The
pattern language outlines an architecture for describing “When” should an adaptation
be done (monitors), “What” adaptation should be performed (event detection) and
“How” to adapt the system (reconfigurators).

The Distributed Monitor (1) provides a simpler solution for monitoring
distributed resources while the Adaptive Monitor (2) describes an extension that
supports dynamic reconfiguration of the monitor. The approach uses rules for triggering
events for when adaptations should be performed. The Event Detector (3), uses the
rules and notifies the mechanisms responsible for the dynamic reconfiguration of the
system. The reconfigurators provide a mechanism for actually adapting the system
safely according to the specified rules. The Automatic Reconfigurator (4)
describes a simpler solution while the Adaptive Reconfigurator (5) describes
dynamic reconfiguration of the reconfiguration process, thus making the reconfigurator
more adaptable and reconfigurable.

There are orthogonal issues that will need to be addressed while applying these
patterns such as Security, Fault-Tolerance, and Real-Time, which are beyond the scope
of this pattern language.

Acknowledgments
The authors would like to thank Eugene Wallingford, Paulo Borba, Linda Rising,
Giuliano Mega, and Eduardo Fernandez for their valuable thoughts and suggestions that
greatly contributed to this work. We would also like to thank the Software Architecture
Group from the University of Illinois at Urbana-Champaign and the
SugarLoafPLoP'2005 Araucaria group for their valuable feedback and comments.

References

[BBN:2002] BBN Technologies. QuO ToolKit User's Guide, release 3.0.10, April
2002. http://quo.bbn.com.

[Buschmann:1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal, Peter Sommerlad, Michael Stal. Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns. John Wiley &
Sons, 1996.

[Chang:2000] Fangzhe Chang and Vijay Karamcheti. Automatic conguration and
run-time adaptation of distributed applications. In Ninth IEEE
International Symposium on High Performance Distributed
Computing, pp. 11-20, Pittsburg, Pennsylvania, August 2000.

[Chen:1996] Zhigang Chen and See-Mong Tan and Roy H. Campbell and
Yongcheng Li. Real-Time Video and Audio in the World Wide Web.
In World Wide Web Journal. 1(1). 1996.

[CORBA:2002] OMG - Object Management Group. The Common Object Request
Broker: Architecture and Specication, November 2002. version 3.0.1.

[Domingues:2005] Helves Domingues and Marco A. S. Netto. The Dynamic Dependence
Manager Pattern. Technical Report RT-MAC-2005-07, Department of
Computer Science, University of São Paulo. 2005.

[Foote:1995] Brian Foote and Joseph W. Yoder Evolution, Architecture, and
Metamorphosis. In Second Conference on Patterns Languages of
Programs (PLoP '95). Monticello, Illinois, September 1995. Also
Pattern Languages of Program Design 2 edited by John M. Vlissides,
James O. Coplien, and Norman L. Kerth. Addison-Wesley, 1996.

[Foote:1998] Brian Foote and Joseph Yoder. Metadata and Active Object-Models
Collected papers from the PLoP '98 and EuroPLoP '98 Conference,
Technical Report WUCS-98-25, Department of Computer Science,
Washington University, September 1998.

[Foster:1997] Ian Foster and Carl Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. In International Journal of Supercomputer
Applications. 11(2), pp. 115-118. 1997.

[Gamma:1994] Erich Gamma, Richard Helm, John Vlissides, and Ralph Johnson.
Design Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley, 1994.

[Goldchleger:2003] Andrei Goldchleger, Fabio Kon, Alfredo Goldman, Marcelo Finger,
and Germano Capistrano Bezerra. InteGrade: Object-Oriented Grid
Middleware Leveraging Idle Computing Power of Desktop Machines.
In Concurrency and Computation: Practice & Experience. Vol. 16, pp.
449-459. March, 2004.

In Concurrency and Computation: Practice & Experience. Vol. 16, pp.
449-459. March, 2004.

[Kircher:2004] Michael Kircher, Prashant Jain. Pattern-Oriented Software
Architecture, Patterns for Resource Management. John Wiley & Sons,
2004.

[Kon&Roman:2000] Fabio Kon, Manuel Roman, Ping Liu, Jina Mao, Tomonori Yamane,
Luiz Claudio Magalhães, and Roy H. Campbell. Monitoring, Security,
and Dynamic Conguration with the dynamicTAO Reflective ORB. In
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing
(Middleware'2000), number 1795 in LNCS, pages 121-143, New
York, April 2000. Springer-Verlag.

[Kon:2000] Fabio Kon, Roy Campbell, M. Dennis Mickunas, Klara Nahrstedt, and
Francisco J. Ballesteros. 2K: A Distributed Operating System for
Dynamic Heterogeneous Environments. In 9th IEEE International
Symposium on High Performance Distributed Computing. Pittsburgh.
August 1-4, 2000.

[KonPhD:2000] Fabio Kon. Automatic Conguration of Component-Based Distributed
Systems. PhD thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, May 2000.

[Kon:2005] Fabio Kon, Jeferson Roberto Marques, Tomonori Yamane, Roy H.
Campbell, and M. Dennis Mickunas. Design, Implementation, and
Performance of an Automatic Configuration Service for Distributed
Component Systems. In Software: Practice and Experience, 35(7), pp.
667-703, May 2005.

[Maes:1987] Maes P. Concepts and experiments in computational reflection. In
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications Conference '87,
volume 22 of Sigplan Notices, pages 147-155. ACM, December 1987.

[Moreto:2001] Douglas Moreto and Markus Endler. Evaluating composite events
using shared trees. In IEEE Proceedings Software, 2001. ISSN 1462-
5970, 148(1).

[Moura:2002] Moura A, Ururahy C, Cerqueira R, and Rodriguez N. Dynamic support
for distributed auto-adaptive applications. In Proceedings of AOPDCS
- Workshop on Aspect Oriented Programming for Distributed
Computing Systems (held in conjunction with IEEE ICDCS 2002),
pages 451-456, Vienna, Austria, July 2002.

[Noble:1999] B. D. Noble and M. Satyanarayanan. Experience with adaptive mobile
applications in Odyssey. In Mobile Networks and Applications,
4(4):245-254, 1999. Kluwer.

[Schmidt:2000] Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann.
Pattern-Oriented Software Architecture, Volume 2, Patterns for
Concurrent and Networked Objects. John Wiley & Sonss, 2000.

Concurrent and Networked Objects. John Wiley & Sonss, 2000.

[Silva:2003] Francisco J. S. Silva, Markus Endler, and Fabio Kon. Developing
Adaptive Distributed Applications: a Framework Overview and
Experimental Results. In Proceedings of the International Symposium
on Distributed Objects and Applications. LNCS 2888, pp.1275-1291.
Catania, Sicily, Italy, November, 2003.

[Sudame:1997] Sudame P and Badrinath B. On providing support for protocol
adaptation in mobile wireless networks. Technical report, Department
of Computer Science, Rutgers Universit, June 1997.
http://www.cs.rutgers.edu/pub/technical-reports/dcstr-333.ps.Z.

[Vanegas:1998] Vanegas R, Zinky J, Loyall J, Karr D, Schantz R, and Bakken D.
QuO's runtime support for quality of service in distributed objects. In
Proceedings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware'98),
The Lake District, England, September 1998.

[Welling:1997] Girish Welling and B. R. Badrinath. A framework for environment
aware mobile applications. In Proceedings of the 17th International
Conference on Distributed Computing Systems (ICDCS'97), May
1997.

[Yoder:2001] Joseph Yoder, Federico Balguer and Ralph Johnson. Architecture and
Design of Adaptive Object-Models. In Proceedings of the 2001
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA'01). ACM SIGPLAN Notices, December
2001.

[Yoder:2002] Joseph Yoder and Ralph Johnson. The Adaptive Object-Model
Architectural Style. In Proceedings of the Workshop IEEE/IFIP
Conference on Software Architecture 2002 (WICSA3 ‘02) at the World
Computer Congress in Montreal, August 2002. Software Architecture
System Design, Development and Maintenance Edited by Jan Bosch,
Morven Gentleman, Christine Hofmeister, and Juha Kuusela; Kluwer
Academic Publishers 2002.

[Zinky:1997] John A. Zinky, David E. Bakken, and Richard E. Schantz.
Architectural Support for Quality of Service for CORBA Objects. In
Theory and Practice of Object Systems. April, 1997.

