
Metadata and Adaptive Object-Model s 1

Metadata and Adaptive Object-Models

Joseph W. Yoder 1, Reza Razavi 2

1 The Refactory, Inc. - 209 W. Iowa
Urbana, IL 61801 USA

yoder@refactory.com

2 University of Paris 6, LIP6 - CNRS
Case 169, 4, place Jussieu,

75252 PARIS Cedex 05, FRANCE
Reza.Razavi@lip6.fr

Abstract. The unrelenting pace of change that confronts contemporary soft-
ware developers compels them to make their applications more configurable,
flexible, and adaptable. A way to meet such requirements is to use an Adap-
tive Object-Model (AOM). This paper describes common architectures for
adaptive object-models and summarizes the results from our ECOOP 2000
workshop. Participants to this workshop focused on comparisons between the
Adaptive Object-Model’s approach and those of Reflection and Metamodeling.
It emerged that there are common themes present in all three approaches and
that these approaches can compliment one another for assisting developers in
designing and building systems that can more quickly adapt to new and chang-
ing business requirements.

What is an Adaptive Object-Model?

The era when business rules were buried in code is coming to an end. Today, users
themselves often seek to dynamically change their business rules without the writing
of new code. Customers require that systems are built that can adapt more easily to
changing business needs, that can meet their unique requirements, and can scale to
large and small installations.

On the other hand, the same technique is adequate for the slightly different
purpose of producing a whole line of software products: of course, a line of products
may be obtained by variously instantiating a unique abstract model, but also by
adapting a given initial system to various requirements that appear simultaneously
instead of evolving in time. Moreover, the diversification of a successful product
may also be seen as a form of reengineering.

Black-box frameworks provided early solutions for the design of flexible im-
plementation of business rules [3]. Recent research in the different types of architec-
tures to meet such requirements from an object-oriented perspective has been cata-
logued as Adaptive Object-Models [1, 2, 5, 13, 16]. An Adaptive Object-Model is
where the object representation of the domain under study has itself an explicit object

Metadata and Adaptive Object-Model s 2

model (however partial) that is interpreted at run-time. Such an object model can be
changed with immediate (but controlled) effect on the system interpreting and run-
ning it. Note that Adaptive Object-Models usually requires a thorough analysis of
the domain at hand, which may very well include a black-box framework as an ini-
tial stage.

Objects have states and respond to events by changing state. The Adaptive Ob-
ject-Model defines the object model, i.e. the objects, their states, the events, and the
conditions under which an object changes state, in a way that allows for dynamic
modification. If you change the object model, the system changes its behavior. For
example, such a feature makes it easy to integrate a workflow mechanism, which
proves useful in many systems [4, 11].

Adaptive Object-Models successfully confront the need for change by casting
information like business rules as data rather than code. In this way, it is subject to
change at runtime. Using objects to model such data and coupling an interpretation
mechanism to that structure, we obtain a domain-specific language, which allows
users themselves to change the system following the evolution of their business.

Metadata1 is then often used in adaptive object-models to describe the object
model itself. When runtime descriptions of these objects are available, users can
directly manipulate these objects. Since the system can interpret the metadata to
build and manipulate these runtime descriptions, it is easy to add new objects to the
adaptive object-model, and make them immediately available to users. This ap-
proach has been validated by several successful industrial projects [6,7,9,11,15].

Metadata and Adaptive Object-Model workshops at the University of Illinois in
1998 and at OOPSLA '98 and '99 were devoted to "pattern mining" some of these
ideas. Our workshop at ECOOP '00 (June 2000 at Cannes in France) was oriented
toward a broader analysis of the possible uses of the Adaptive Object-Model technol-
ogy, based on the examination of a range of examples. This paper describes the
results of the concrete approaches for building dynamically adaptable systems.

Hot topics in Adaptive Object-Modeling

This workshop evolved from the previous workshops held at the University of Illinois
and OOPSLA. Those workshops had many papers submitted from researchers and
practitioners dealing with issues involving dynamically adaptable systems. This lead

1 MetaData can be described by saying that if something is going to vary in a predictable way,
store the description of the variation in a database so that it is easy to change. In other
words, if something is going to change a lot, make it easy to change. The problem is that it
can be hard to figure out what changes, and even if you know what changes then it can be
hard to figure out how to describe the change in your database. Code is powerful, and it
can be hard to make your data as powerful as your code without making it as complicated as
your code. But when you are able to figure out how to do it right, metadata can be incredi-
bly powerful, and can decrease your maintenance burden by an order of magnitude, or two.
[R. Johnson]

Metadata and Adaptive Object-Model s 3

to the following which is a list of the primary topics that we have been addressing in
the field of Adaptive Object-Models and which was part of the call for participation
to our workshop.

1. Experiences in developing systems, which have been developed with, or
might have benefited from, an Adaptive Object-Model.

2. Building a common vocabulary (terminology, definitions, etc,); e.g. Typical
AI terminology (ontologies) vs. software engineering terminology

3. Models and languages for Metadata and AOMs, including current standardi-
zation efforts and expressive (even ambiguous) type languages,....

4. Comparative works with similar approaches like Metamodeling and Reflec-
tion.

5. Specific implementation techniques for Adaptive Object-Models.
6. Design concepts and classification according to semantics and relevance.
7. Appropriate development process models for cultivating Adaptive Object-

Models (analysis patterns, design patterns, ...), and the impact of AOMs on
development process models (iterative, incremental, testing, ...).

8. How do requirements such as heterogeneous, distributed environments, smart
software and agents, and user empowerment drive the evolution of Adaptive
Object-Models? How can we overcome resistance to building Adaptive Ob-
ject-Models from programmers and managers?

9. How do get Adaptive Object-Models to exhibit acceptable performance? Can
we borrow from traditional disciplines, e.g. caching, Just-In-Time compila-
tion, heuristics, statistics, stereotypical vs. customized interfaces, and tools?

10. How do measure such aspects of Adaptive Object-Models as stability, class
library complexity and related metrics, learning curve, cost (development of
the 'framework', building the applications, change, maintenance), and per-
formance?

11. Dealing with views continues to be a challenge; can we use Adaptive Object-
Models to solve some of these problems? For instance, some models replace a
hard-wired view on classification of objects by a dynamic view based on ob-
servational equivalence of object behavior. This view takes into account dy-
namic properties of the parties involved in a contract. If Adaptive Object-
Models are any help, which qualities must they possess?

12. Most Adaptive Object-Model implementations focus on one or two isolated
aspects, e.g. object model, business rules, mapping objects onto a database.
Other aspects are typically left to more traditional approaches. Hence, they
often tend to interfere in ad-hoc and hard-wired ways. For instance, it is of-
ten hard to design good, pro-active user interface code that is cleanly sepa-
rated from the business rules without introducing redundancy of one sort or
another. Can we use weaver-like approaches in combination with Adaptive
Object-Models to achieve more global-wide, yet dynamic reflection?

Metadata and Adaptive Object-Model s 4

Comparative Summary of Contributions

This workshop brought together researchers and practitioners from a variety of areas
in order to explore the themes that underlie such systems. Position papers for all
workshop participants can be found at http://www-poleia.lip6.fr/~razavi/aom/papers.

A good sign that a technical area is ripening is that a number of people in-
dependently discover it. This would seem to be the case with metadata and AOMs.
In the main, participants focused on comparisons between the Adaptive Object-
Model’s approach and those of Reflection and Metamodeling. It emerged that in-
deed all three approaches share the same four levels of abstraction.

The following is a more detailed view of the main positions that were pre-
sented for participation at the workshop.

Using AOMs for the description of types of phenomenon over a period of time

Analysis Patterns are solutions to recurrent problems in modeling a problem domain.
However, analysis patterns are not necessarily easy to implement. We have devel-
oped several applications that capture medical observations about patients using the
Observer pattern. This paper [9] describes how we dealt with problems while evolv-
ing from analysis to design, how we extended the Observation pattern to work in our
environment, and the details of how we implemented this pattern. This is a very
good example of using Adaptive Object-Models to allow end-users to dynamically
customize their system without needing to write new code.

Using AOMs for building Flow-independent End-User Programming Systems

The goal of end-user-driven application development is to provide end users with
greater computational power to create, customize and extend their software.

Adaptive Object-Model architectural style is particularly adequate for build-
ing end-user programming systems. By providing design patterns to create dynami-
cally adaptable systems, they offer an appropriate foundation to the problem of facili-
tating programming for end users and domain experts.

However, creating flow-independent [4] end-user programming systems in
the context of Adaptive Object-Models is still a problem.

Type Cube [14], as shown in Fig-1, is a model that addresses this problem
by coupling micro-workflow [4] and the core of Adaptive Object-Models [6, 7]. It
provides guidelines for designing object-oriented applications that can be extended
and personalized by dynamic definition of new entity types and processes. This
design work can be done by domain experts. Type Cube has been validated by two
industrial projects.

Metadata and Adaptive Object-Model s 5

Knowledge Level Operational Level

A
pplication

D
om

ain
M

icro
W

orkflow
D

om
ain

AttributeTypeEntityTypeStrategy

AttributeEntity

ProcedureType

Procedure

Association

Formal
Parameter

F
orm

al
P

aram
eter

Effective
Parameter

Fig-1. Type Cube Model building flow-independent end-user programming systems.

AOMs for building Data Warehouse and Business Intelligence Environments

The Common Warehouse Metamodel (CWM) is a recently adopted standard of the
Object Management Group (OMG) for metadata interchange in the data warehouse
and business intelligence environments. CWM extends the OMG's standard
MOF/UML/XMI metamodeling architecture with data warehousing and business
intelligence domain concepts. CWM supports a model-driven approach to metadata
interchange, in which object models representing shared metadata are constructed
according to the specifications of the CWM metamodel. Tools agree on fundamental
domain concepts (as defined by the CWM metamodel) and, therefore, are capable of
understanding a wide range of models representing particular metadata instances.

We believe that the OMG architecture (in particular, the MOF ontology,
meta-layer stack, and semantics imposed on compliant metamodels) generally allows
for the creation of metamodels whose instances readily align with (or reveal or ex-
pose) the fundamental patterns of Adaptive Object-Models. The CWM metamodel,
by directly extending MOF/UML, drives support for Adaptive Object-Model patterns
into the data warehousing and business intelligence domains, leading the way for a
new generation of data warehousing and business intelligence tools that are dynami-

Metadata and Adaptive Object-Model s 6

cally configurable and highly adaptive to changing environments. Such tools would
be driven by Adaptive Object-Models, with CWM serving as the foundational meta-
model guiding the creation of those Adaptive Object-Models.

Support for Adaptive Workflow (CRISTAL Project at CERN, Geneva)

The current trend in software engineering is towards developing complex systems for
use by growing and changing communities of users that require access to large-scale
data repositories or data warehouses. Inherent in the approach to designing such
systems is the ability for systems to cope with changing user requirements, to be
inter-operable with existing (legacy) systems, to handle multiple versions of reusable
code and to be configurable as needs evolve. One approach that is gaining favor is to
develop systems that are Description-driven [12] i.e. that not only handle and allow
manipulation of data objects but also objects that capture system description.

Using AOMs for Content Management Transactions

Another domain where Adaptive Object-Models have been identified is form-
database interaction in a content management system. Handles for read/write data-
base statements have properties, strategies and can be implemented as type objects
[10].

An additional complication, which came up in this application, was the
need for a transaction manager to orchestrate the interaction of individual objects,
which raised the question of how to formalize different pathways through a tree of
interdependencies.

Summary of discussions

A majority of participants observed that Adaptive Object-Modeling, Metamodeling
and Reflection share the same dimensions of abstractions as shown in Fig-2. The top
most level, called L3, represents a language for describing languages. The next
level, L2, represents a domain specific language, derived by applying L3 to the ap-
plication domain. The L1 level represents the specification for a particular software
(system). Finally, the L0 level represents is an instance of that specification.

Metadata and Adaptive Object-Model s 7

An instance of that specificationAn instance of that specification

A domain-specific languageA domain-specific language

A system specificationA system specification

A
language

for
describing languages

L3

L2L2

L1L1

L0L0

Fig-2. Dimensions of abstraction; AOMs, Reflection and OMG ’s metamodeling Architecture.

Type Cube (Fig. 1) is an example of this conceptual layering from Adaptive
Object-Modeling. Applying Type Cube to an application domain delivers an adap-
tive object-model-based domain specific language for that domain. This language
allows experts to specify their applications, which are then instantly executable.

The Reflection community has also used similar approaches to provide adapt-
able programming languages. Many reflection techniques can be found in Adaptive
Object-Models.

The Common Warehouse Metamodel (CWM) is another example from Meta-
modeling , that has already adopted this four level architecture. In fact, the MOF
ontology, meta-layer stack, and semantics is imposed on compliant metamodels.

CWM extends the OMG's standard MOF/UML/XMI metamodeling architec-
ture with data warehousing and business intelligence domain concepts. CWM sup-
ports a model-driven approach to metadata interchange, in which object models repre-
senting shared metadata are constructed according to the specifications of the CWM
metamodel. Tools agree on fundamental domain concepts (as defined by the CWM
metamodel) and, therefore, are capable of understanding a wide range of models repre-
senting particular metadata instances.

The OMG architecture generally allows for the creation of metamodels whose
instances readily align with (or reveal or expose) the fundamental patterns of Adap-
tive Object-Models. The CWM metamodel, by directly extending MOF/UML, drives
support for Adaptive Object-Model patterns into the data warehousing and business
intelligence domains, leading the way for a new generation of data warehousing and
business intelligence tools that are dynamically configurable and highly adaptive to

Metadata and Adaptive Object-Model s 8

changing environments. Such tools would be driven by Adaptive Object-Models,
with CWM serving as the foundational metamodel guiding the creation of those
Adaptive Object-Models.

Conclusions

A dominant theme was that the need to confront change is forcing system architects
to find ways to allow their systems and users to more effectively keep pace with these
changes. A way to do this is to cast information like business rules as data rather
than code, so that it is subject to change at runtime. When such data are reflected as
objects, these objects can, in time, come to constitute a domain-specific language,
which allows users themselves to change the system as business needs dictate.

A major accomplishment of this workshop was to finally get this disparate
group together, and to establish this dialog. However, we’ve only begun the task of
fleshing out these architectural issues, uncovering the patterns, and of better defining
our vocabulary. It was noted that principles of Reflection and MOF could be used to
better support the goals of AOMs and vice-versa. We are looking forward to recon-
vening the members of this community to continue this work. The focus of the next
meeting will be around on seeing where these communities meet and how they can
support one another for achieving the goal of building dynamically adaptable sys-
tems.

Metadata and Adaptive Object-Model s 9

References

1. Brian Foote and Joseph Yoder. “Architecture, Evolution, and Metamorphosis,” Pattern
Languages of Program Design 2, John M. Vlissides, James O. Coplien, and Norman L.
Kerth, eds., Addison-Wesley, Reading, MA., 1996.

2. Brian Foote and Joseph Yoder. “Metadata and Active Object-Models,” Collected pa-
pers from the PLoP '98 and EuroPLoP '98 Conference, Technical Report #wucs-
98-25, Dept. of Computer Science, Washington University, Sept 1998.

3. Don Roberts and Ralph Johnson. “Evolving Frameworks: A Pattern Language for Devel-
oping Object-Oriented Frameworks,” Pattern Languages of Program Design 3, Robert
Martin, Dirk Riehle, and Frank Buschmann, eds., Addison-Wesley, Reading, MA., 1997.

4. Dragos A. Manolescu and Ralph E. Johnson , Dynamic Object-Model Workflow Frame-
work for Developers. URL: http://micro-workflow.com/

5. Francis Anderson. “A Collection of History Patterns,” Collected papers from the
PLoP '98 and EuroPLoP '98 Conference, Technical Report #wucs-98-25, Dept. of
Computer Science, Washington University, September 1998.

6. Francis Anderson and Ralph Johnson. The Objectiva telephone billing system. Meta-
Data Pattern Mining Workshop, Urbana, IL, May 1998. Available on the Web at:
http://www.joeyoder.com/Research/metadata/UoI98MetadataWkshop.html.

7. Jeff Oakes and Ralph Johnson. The Hartford insurance framework. MetaData Pattern
Mining Workshop, Urbana, IL, May 1998. Available on the Web at:
http://www.joeyoder.com/Research/metadata/UoI98MetadataWkshop.html.

8. John Poole - The Common Warehouse Metamodel as a Foundation for Active Object
Models in the Data Warehouse Environment. Position paper to ECOOP‘2000 workshop
on Metadata and Active Object-Model Pattern Mining - Cannes, France.

9. Joseph W. Yoder, Federico Balaguer, Ralph Johnson - From Analysis to Design of the
Observation Pattern. Position paper to ECOOP‘2000 workshop on Metadata and Active
Object-Model Pattern Mining - Cannes, France.

10. Holger Blasum, Thorsten Weigl - Content management transactions -applicability of a
dynamic object model. Position paper to ECOOP‘2000 workshop on Metadata and Ac-
tive Object-Model Pattern Mining - Cannes, France.

11. Martine Devos and Michel Tilman. A repository-based framework for evolutionary
software development. MetaData Pattern Mining Workshop, Urbana, IL, May 1998.

12. P. Brooks, Z. Kovacs, J-M Le Goff, R. McClatchey, T. Solomonides & N. Toth.
Ontologies, Patterns and Description-Driven Systems. Position paper to ECOOP‘2000
workshop on Metadata and Active Object-Model Pattern Mining - Cannes, France.

13. Ralph Johnson and Bobby Woolf. “Type Object,” Pattern Languages of Program Design
3, Robert Martin, Dirk Riehle, and Frank Buschmann, eds., Addison-Wesley, Reading,
MA., 1997.

14. Reza Razavi - Coupling The Core of Active Object-Models and Micro Workflow ---
Foundations of a Framework for Developing End User Programming Environments. Po-
sition paper to ECOOP‘2000 workshop on Metadata and Active Object-Model Pattern
Mining - Cannes, France.

15. Reza Razavi. “Active Object-Models et Lignes de Produits”. OCM’2000. Nantes,
France. May 2000. URL: http://www-poleia.lip6.fr/~razavi/ocm2000.

16. Joseph W. Yoder, Brian Foote, Dirk Riehle, and Michel Tilman Metadata and Active
Object-Models Workshop Results Submission; OOPSLA Addendum, 1998.

Metadata and Adaptive Object-Model s 10

Workshop participants

Our workshop gathered for the first time researchers from Adaptive Object-
Modeling with those from MetaModeling and Reflection. Table 1 shows the list of
all participants to our workshop:

Name Contact

Y. Shaham-Gafni gafni@il.ibm.com

J. Bézivin
jean.bezivin@sciences.univ-
nantes.fr

H. Blasum blasum@muc.de

V. Couturier
vincent.couturier-
9333783@netserver.univ-lyon3.fr

N. Parlavantzas arlavantzas@lancaster.ac.uk

J. Poole John_Poole@hyperion.com

R. Razavi Reza.Razavi@lip6.fr

N. Revault Nicolas.Revault@lip6.fr

G. Rozsavolgyi Gerard.Rozsavolgyi@lip6.fr

N. Toth Norbert.Toth@cern.ch

J. Yoder joeyoder@joeyoder.com

Table 1. Workshop participants

