
Patterns For Developing SuccessfulObject-Oriented FrameworksJoseph W. YoderAugust 27, 19971 OverviewThe work described here extends last years OOPSLA framework workshoppaper [Yoder 1996] describing a "Business Modeling" application frameworkthat was developed and deployed at Caterpillar, Inc. Caterpillar, Inc. joinedthe National Center for Supercomputing Applications at The University ofIllinois as an Industrial Partner in December 1989 to support the educationalfunction of the University and to use the University environment to researchnew and interesting technologies. During the partnership Caterpillar hasinitiated various projects, including the evaluation of supercomputers foranalysis and the investigation of virtual reality as a design tool.As described in last years workshop paper, the Business Modeling projectaims to provide managers with a tool for making decisions about such as-pects of the business as: �nancial decision making, market speculation, ex-change rates prediction, engineering process modeling, and manufacturingmethodologies.This tool must be 
exible, dynamic, and be able to evolve along withbusiness needs. Therefore, it must be constructed in such a way so as tofacilitate change. It must also be able to coexist and dynamically cope witha variety of other applications, systems, and services [Foote & Yoder 1996].One of the problems that we had to deal with was that there were manydi�erent business units within Caterpillar in which the system needed to bedeployed. Each of these business units had a di�erent business model anddi�erent requirements for viewing and searching their data.The system that was developed and deployed was a Financial Modelingframework [Yoder 1997] that generated reports, answered questions suchas why costs were too high, allowed for error corrections, and included a1



security model. The framework allowed for quickly creating applicationsthat examine �nancial data stored in a database. The applications thatare generated produce pro�t and loss statements, balance sheets, detailedanalysis of departments, sales regions and business lines, with the ability todrill down to individual transactions.The framework was developed using Smalltalk but it can create a com-plete system for examing �nancial data without any Smalltalk programming.This is primarily because the business model is stored in a database. Theframework interprets the descriptions of the business model along with GUIdescriptions for the reports and dynamically builds an application basedupon this information.The primary principle discussed in this paper is to not program in ageneral purpose language, rather program in a higher-level domain-speci�clanguage. You can do more with a general purpose language, but witha higher-level language you can more quickly program, within a limiteddomain, in fewer lines of code. This work provides a visual-object-orientedlanguage [Burnett, Goldberg, Lewis 1995] to allow one to program withoutfeeling like they are programming. They are designing the application interms of domain speci�cs that they are familiar with.2 Patterns for Developing FrameworksThe framework development process follows the model presented in theEvolving Frameworks paper [Roberts & Johnson 1997]. We started outwith three business units that appeared to be completely di�erent. Afterworking on these for a few months, we saw many similarities. This lead us todevelop supporting white-box frameworks for reusing code within and acrossthese applications. It required the developer to write many subclasses forspecifying the di�erences between business units, however their were somekey functional areas that wer able to be abstracted out and reused. We onlyfully implemented one system for Caterpillar.The user-interface frameworks primarily consisted of summary reports,detailed transaction reports, and graph reports. Some basic componentswere built with some abstract superclasses. Every time you needed a newreport for a business unit, you wrote a new subclass for the GUI that alsoimplemented much of the business logic. These white-box frameworks fol-lowed what you might think of business objects as our framework had classesfor income, cost, inventories and the like. All of the similarities were ab-2



stracted out into a common ReportModel superclass which was a subclassof the ApplicationModel class in VisualWorks.Early in the development stage, we noticed that the business logic neededa lot of queries to get values from a relational. These queries often had totrigger updates of other queries or values whenever some selection criteriachanged. For example, maybe the user was looking at the income for product\X" and wanted to change the view to show the income for product \Y".In order to get all of the views to update correctly, every view and everyquery that had values coming from the database representing income forproduct \X" had to be updated to represent income for product \Y". Weused Smalltalk's dependency mechanism to handle these updates. Needlessto say, the maintenance of these updates became a nightmare. Every timewe wanted to change queries or write a query based upon the values of otherqueries, we had to either change or write the appropriate update method.These were the early \hot-spots" for us. This lead us to develop a Query-Object class hierarchy that allowed to quickly build queries for getting valuesfrom the database and also allowed us to use the ValueModel provided bySmalltalk for automatically updating values. These because components forbuilding the business logic and plugging them into views for being displayed.Queries could be built that were dependent upon a ValueModel. TheseQueryObjects were automatically updated whenever the ValueModel thatthey were dependent upon changed. You could also build QueryObjectsbased upon other queries that automatically updated themselves wheneverany of the queries that they were dependent upon changed. This reducedour maintenance nightmare by a large factor as we no longer had to worryabout writing or updating dependency code. [Brant & Yoder 1996] talksabout these issues in more detail in their Reports patterns.We were also able to build a black-box framework for graphs and detailedreports early on as each of them only took a collection of values and displayeda report for them. Thus, we could parameterize these reports to \openOn:"a query or collection of values that then dynamically built what was neededfor viewing the data. This was done by reusing what was provided by theVisualWorks graphing and database frameworks.Most reports still required customization and subclassing. A major im-provement happened when we separated the business logic from the appli-cation models. We ended up with a logically three-tiered system where thedomain objects knew how to get all of their values from the database andthe GUIs knew how to display the values and update them. We had twoclass hierarchies that needed to be maintained, one for the GUIs and one3



for the domain objects. Whenever a new report needed to be created, thedeveloper would subclass one of the GUI objects and overwrite what wasbeing displayed and also wrote a subclass of a domain object that describedthe business logic for what was being displayed.We then noticed that all of the GUIs were very similar and were reallyjust the same view on di�erent data elements. This lead us to build acomponent library for the GUIs which were primarily pluggable objects.This became the beginnings of a black-box framework as the GUIs werebuilt from descriptions that were decoded into how to build the GUI andwhat domain elements should be plugged into the view.As we saw more and more similarities, we continued to either extendour components or make new components. We developed more pluggableobjects and they became more and more �ne-grained. This was an iterativeprocess where we continued to rethink our design and refactor our code.Ultimately we saw where we could also describe the business logic ina database and build the domain objects on the 
y. This allowed for thebusiness logic to dynamically change without rewriting code. We ended upwith a restrictive domain-speci�c language. It allowed the developer of thesystem to program at a high-level within the limits of the domain, thusquickly producing an application for analyzing the �nances of a business.The set of frameworks had evolved to be completely black-box. We provideways to describe the GUIs and the business logic and store the values in adatabase. The values are read in on demand and through the use of theInterpreter and Builder patterns [Gamma et. al 1995] dynamically build anapplication as needed.The next step was to create visual builders for describing the GUIs andthe business logic. We took a top-down approach for a proof of concept. Thisapproach took the way you viewed reports from the top-level down to thesummary, detailed and graph reports and allowed you to step through anddescribe the reports. We also allowed for the business logic to be described inthis manner as it starts from the high level reports and you let describe thevalues that get plugged into the GUIs down to the queries that ultimatelyget mapped into SQL code for getting the values from a relational database.We ended up with two databases. One database is the database thatmodels the real business data. It has the values of the actual transactionof your business that may include for example costs, income, and so forth.This database can evolve with your business needs which might not onlytake new types of data, but might also have a new structure de�ning thedatabase. Even though our frameworks maps into a relational database,4



since QueryObjects are a layer above the real business database, our frame-work can easily be changed to map into any type of database for gettingyour business values.The second database which holds the values describing the GUIs andthe business logic (the meta-data). The structure of this database shouldnever change unless you change the framework. However the values that arekept in this database does change with your business needs. Whenever anew report or a new way to slice your data is needed, the modeler simplydescribes the new look of the new report along with the business logic neededfor presenting the values in the report. This data is used for dynamicallybuilding the view onto your business data.The surprising part of this was that instead of ending up with normalbusiness objects such as Income and Cost, our framework consisted of For-mula, Query, and GUI objects that really just supported our domain-speci�clanguage.Ten years ago, people would have thought that our �rst version of thesystem separated the business logic from the GUI. After all, we didn't reallywrite any view classes. We only wrote application models. However, whenyou have a well-developed GUI framework, the GUI work is how you buildapplication models. Now you want to separate application models from the"real" model. And if you want it to be dynamic, thus adaptable to thechanging needs of your business, it is important to incorporate re
ectivetechniques into your framework.3 ConclusionThis workshop paper has brie
y described the evolutionary process that wasundertaken during the development of the Financial Modeling Framework.Framework development was an interactive process for us as we �rst hadto develop some working applications in order to see the common abstrac-tions. Early on as we were learning the domain we developed white-boxframeworks. We were then able to generalize from the concrete examples.As we iterated through the process, the abstractions revealed ways to gen-eralize into components. These components became more black-box and�ne-grained which required much less programming.Ultimately we ended up with a domain-speci�c language for buildingthese frameworks without writing any Smalltalk code. This then lead to thedevelopment of a visual-language for building your application into some-5



thing that the domain-experts will be familiar with. The only thing left isto extend the language with debugging tools, pro�lers, version control, andoptimizers.This work was supported in part by Caterpillar/NCSA at the Universityof Illinois. The author is grateful for the support provided by the abovementioned entities but in no way holds them responsible for any possibleinaccuracies or claims.4 References[Goldberg & Robson 1983] Adele Goldberg and David Robson; Smalltalk-80: The Language and its Implementation, Addison-Wesley, Reading, MA,1983.[Brant & Yoder 1996] John Brant and Joseph Yoder; Reports Collected pa-pers from the PLoP '96 and EuroPLoP '96 Conference, Technical Report#wucs-97-07, Dept. of Computer Science, Washington University Depart-ment of Computer Science, February 1997, URL:http://www.cs.wustl.edu/~schmidt/PLoP-96/yoder.ps.gz.[Foote & Yoder 1996] Brian Foote and Joseph Yoder; Architecture, Evolu-tion, and Metamorphosis, Second Conference on Pattern Languages of Pro-grams (PLoP '95) Monticello, Illinois, September 1995 Pattern Languages ofProgram Design 2 edited by John Vlissides, James O. Coplein, and NormanL. Kerth. Addison-Wesley, 1996.[Gamma et. al 1995] Eric Gamma, Richard Helm, Ralph Johnson, and JohnVlissides, Design Patterns: Elements of Reusable Object-Oriented Software,Addison-Wesley, Reading, MA, 1995.[Roberts & Johnson 1997] Don Roberts and Ralph Johnson; Evolving Frame-works: A Pattern-Language for Developing Object-Oriented Frameworks,Third Conference on Pattern Languages of Programs (PLoP '96) Monticello,Illinois, September 1995 Pattern Languages of Program Design 3 edited byJohn Vlissides, James O. Coplein, and Norman L. Kerth. Addison-Wesley,1997.[Yoder 1996] Object-Oriented FrameWorks Tutorial for OOPSLA '96, URL:http://www-cat.ncsa.uiuc.edu/~yoder/papers/oopsla96/ooframewks/ooframewks.html.[Yoder 1997] A FrameWork for Building Financial Models, URL:http://www-cat.ncsa.uiuc.edu/~yoder/�nancial framework/.6



5 BiographyJoseph W. Yoder is an object-oriented consultant and is working on hisPh.D. with Professor Ralph Johnson. His focus is currently on object-oriented technology and how it changes the way software is developed. Inparticular, he is interested in how to use and develop frameworks, whichhe believes is a key way of reusing designs and code. He is studying andwriting design patterns for developing reusable software and domain speci�clanguages.Joe has worked on the architecture, design, and implementation of vari-ous software projects dating back to 1985. These projects have incorporatedmany technologies and range from stand-alone to client-server applications,multi-tiered, databases, object-oriented, frameworks, human-computer in-teraction, collaborative environments, and domain-speci�c visual-languages.These applications have been in many domains, including Medical Infor-mation Systems, Medical Examination Systems, Statistical Analysis, Sce-nario Planning, Client-Server Relational Database System for keeping trackof shared speci�cations in a multi-user environment, TelecommunicationsBilling System, and Business & Medical Decision Making.Joe believes that in order to see abstractions, you must iterate throughthe development process. Architects and designers are usually not the do-main experts so it becomes important to provide quick feedback loops forlearning the domain from the experts. Once the basics of a domain havebeen learned, it is then possible to see the abstractions and build frameworksthat consist of a high-level domain-speci�c language.For the last two years Joe has been investigating "visual languages forbusiness modeling". He is designing them, using them, and implementingthem. His current project has been on using frameworks to develop andimplement visual languages for use with \business modeling". This project isaimed at providing support for decision making during the business process.Joe believes that Frameworks are both a way of coming up with visuallanguages and a way of implementing them, because if you focus on build-ing something in an Object-Oriented language, then building a frameworkfor it, then making the framework composable, and then making a directmanipulation tool for composing applications using a framework, you willautomatically discover a visual language.Joe's Research Interests Include: Computational Theory, Learning The-ory, Human Computer Interaction, Software Engineering, Computer-supportedCooperative Work, Visual Programming (including grammars and parsing),7



Expert Systems, Intelligent User Interfaces (providing intelligent automaticsemantic feedback), Object-Oriented Programming and Databases, Designof Reusable Software-speci�cally with the use of Frameworks, Domain Anal-ysis and Engineering, and Pattern Languages of Programming.

8


